
REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP002

THE REALIMATION SCENE GRAPH PAGE 1

TP002: The RealiMation Scene Graph

Introduction
At the core of the RealiMation system is its scene graph, which is a collection of different
object types and their interconnections. This document describes the scene graph, pointing
out how to use the API to manipulate it, and the features provided by the various object
interconnections.

A scene graph is built up using RealiMation API (Application Programming Interface) calls,
and once data has been sent through the API, the scene graph is known as a RealiBase. The
RealiMation API provides functions for saving and loading a RealiBase to and from hard
disk.

RealiMation Objects
There are eleven different object types in the RealiMation API:-

Type Function
Server Distributed network rendering
Channel Represents display hardware
View A container of 3D viewable objects
Geometry Represents the shape of an object
Instance Instantiates geometry for building articulated object hierarchies
Light Illuminates a scene
Atmospheric Contains lights and fogging
Camera Represents the 3D to 2D projection
Path Moves objects over time
Image Textures, backgrounds, photo-realistic depth buffering
Material The light reflectance characteristics of a shape

Each of these object types has its own object specific properties (such as colour and
transparency for a material). They can be uniquely named, and have application specific
properties attached to them.

At run time, each object is assigned a unique ID (identifier), which is used as a handle to
access particular objects. These handles can either be queried by name or by using the
various query functions supplied by the API. For example, to get the ID of an object called
“View 1”, simply call

RTGetIDFromName (“View 1”);

The return value of this call can then be used to access the data of the object, attach it to
other objects, or simply call one of the functions that processes it (e.g. RTDisplayView()
will draw the 3D view).

The next section shows how these different object types work together to generate real-time
multi channel 3D output.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP002

THE REALIMATION SCENE GRAPH PAGE 2

Object Interconnections - The Scene Graph
The diagram on the following page shows how different object types in RealiMation
interconnect, and the features that result from each link. As well as showing the features, the
actual API calls used to make the connection are displayed. Notice how many different
features are implemented by a small set of API calls - see the next section for more information.

The diagram also shows 1-to-1 and 1-to-many relationships between objects. A view can
reference a single camera, and contain lots of instances, for example.

What the diagram does not show, however, is the fact that one instance can belong to a
number of different views. In general, all RealiMation objects can be referenced from multiple
other objects, which is another way of saying, for example, that one material can be shared
amongst many geometry objects. The diagram shows the relationship between a single object
of a given type, and the other object types. The arrows between object types are meant to
help, as they indicate the direction of reference. For example, a view can reference a
background image, but putting the arrow in means that the link cannot be interpreted as
meaning that a background image can only exist in one view.

Object Handles for a Compact API
The diagram shows that many different object links are implemented by just a small subset of
API calls, and thus keeps the API very compact, yet still feature rich, since functions are
defined by type linkage, rather than by special functions. For example, RTSetObject()
does all of the following:

• Terrain following
• Make an instance move
• Make a camera move
• Make a light move
• Define complex hierarchical embedded motions
• Define a view’s lighting and fogging
• Define a view’s 3D->2D projection matrix

This works because all objects, irrespective of type, have a unique ID. RTSetObject()
takes two ID arguments - the container and the object to be contained. All of the above
features can be uniquely defined just by the type of the arguments supplied. For example, a
view’s 3D to 2D projection is defined by containing a camera object within a view.

The corresponding RTInqObject() means that only two functions are needed instead of
fourteen. As long as the developer understands the inter-object linkages, the number of
functions to remember is vastly reduced, improving both API learning curve and application
development time.

A further advantage is that if a new linkage is developed (for example, letting an instance
have a material), the same API’s can be used if they show the same semantics.

RealiMation splits up which functions are used based on the following factors:

• Does the simple fact that two ID’s are linked provide all the information
necessary to make that linkage meaningful?

• Are two ID’s linked by a 1-to-1 or a 1-to-many relationship?

The first factor decides if one of the general linkage functions is used (such as
RTSetObject()), or whether more information is required to put the link in context. For
example, RTAddGeometryAtDetail() is used rather than RTAddObject() because, to
make level of detail meaningful, the position of the geometry object in the set of geometry’s
is required. A table of which calls are used when is shown following the diagram:

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP002

THE REALIMATION SCENE GRAPH PAGE 3

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP002

THE REALIMATION SCENE GRAPH PAGE 4

API Function Usage
RTSetObject() Handles generic 1-to-1 mappings (e.g. camera attached

to a view)
RTAddObject() Handles generic 1-to-many links (e.g. a number of

instances attached to a view)
RTSetAttachment() Handles 1-to-1 mappings, but where some extra

meaning is required, such as a path through the scene
graph for point-at/move-with operations (e.g. always
point a camera at the turret of a tank)

RTAddGeometryAtDetail() Handles specific case of adding multiple geometry’s to
an instance for the creation of level of detail models for
display (see note below).

RTFaces() Handles specific case of attaching faces (which
reference materials) to a geometry object to define
shape. Since a geometry object can have multiple faces,
and each face can have its own material, this is
effectively a 1-to-many relationship between geometry
and material objects.

RTSetMaterial() Handles specific case of attaching images to materials
to provide texture effects when displayed. A material can
have multiple images.

RTSetBackground() Handles the specific case of attaching visual and depth
backgrounds to views. Each view can have one visual
background and one depth background.

Note: All geometry’s attached top instances are treated as level of detail models, even if
there is only a single geometry (and therefore level).

There is also a “fast wrapper” function that can be used in place of multiple calls to
RTAddObject() , for use when adding lots of objects to a single container. This function,
RTAddObjects() , is very useful when adding lots of instances to a geometry object, for
example.

Breaking Object Links
Often applications want to remove object linkages. For example, an aircraft may be carrying
a missile as a sub-instance, but when the missile is fired it needs to exist independently of the
aircraft.

The following table shows the removal counterpart functions to the creation methods mentioned
above:

Creation Function Removal mechanism
RTSetObject() RTSetObject() , supplying a null ID for referenced

object
RTAddObject() RTRemoveObject()

RTAddObjects() RTRemoveObjects()
RTSetAttachment() RTSetAttachment() , passing in a null object array
RTAddGeometryAtDetail() RTDeleteDetailLevel()

RTFaces() RTSetFaces() , RTEmptyGeometry()
RTSetMaterial() RTSetMaterial() , supplying a null ID for images
RTSetBackground() RTSetBackground() , supplying a null ID for images

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP002

THE REALIMATION SCENE GRAPH PAGE 5

Querying the Scene Graph
There are several ways of interrogating the scene graph to get handles of specific object.
Once an application has the handles, it can change anything in the RealiBase. An important
feature of the API is that anything that goes into the RealiBase can come out again. This
means that anything that has been defined (whether by other applications such as the STE,
or the application program itself), can be modified, deleted, or added to.

The following table lists the query mechanisms for the various linkage creation functions
listed earlier:

Creation Function Query mechanism
RTSetObject() RTInqObject()

RTAddObject() RTGetNextObject()
RTSetAttachment() RTInqAttachment()

RTAddGeometryAtDetail() RTInqGeometryAtDetail()
RTFaces() RTInqFaces()
RTSetMaterial() RTInqMaterial()

RTSetBackground() RTInqBackground()

All objects exist “standalone”, in that just because they are in the RealiBase they do not have
to be linked up to other objects. This means that there is always a direct access mechanism
to objects, without having to traverse a whole graph and all its linkages. The function used to
iterate through the ID’s of each different object type is RTGetNextID() .

The ability of objects to exist by themselves without having to be referenced is extremely
useful. For example, objects can exist in memory that are swapped in and out dynamically
under application control, without having to be recreated or located on hard disk again. Another
example that is often used is to create a view object containing collision models (normally
simpler versions of the actual visual ones), and use this for raytesting and collision detection
of just those objects required. A view can be processed and accessed even without displaying
it.

Another way of traversing the scene graph is by using the RTWalkObject() function, supplying
your own callback function. This takes in any object type, and calls the supplied function for
each scene graph object (or node) visited.

When building scene graphs, particularly ones that support object instancing, and important
feature is the ability to test if adding one object to another would result in an invalid cyclic
dependency. For example, having object A reference object B which references C which
references A again would cause infinite loops and program crashes. The RealiMation API
provides a function RTIsSubObject() to help applications guard such an occasion, without
imposing a performance overhead of checking every time an object is added into the scene
graph.

Two useful utility functions are RTListGeometryInstances() and RTListInstance
References(). The former allows an application to find all instances of a particular geometry
object, while the latter returns all geometry objects that contain a particular instance.

Object Properties
Each object type has its own set of intrinsic properties. For example, a camera has position,
orientation, and field of view as some of its unique properties that, in effect, define it as being
a “camera”. Similarly, an image has its own set of image-specific properties such as pixels,
mip mapping mode etc.

In addition to these intrinsic (sometimes called “stock”) properties, applications can add their
own property values to any ID. In other words, an application can append its own data structures

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP002

THE REALIMATION SCENE GRAPH PAGE 6

to any object. Almost any RealiMation application can benefit from using this feature. This
ability to add application defined information to an object, in conjunction with objects being
able to exist independently, means that the developer does not have to duplicate the
RealiMation scene graph to create their own records in complex applications. All they need
to store is object handles, and let RealiMation look after the structure.

The API provides a set of common properties that are useful at run rime, such as ID locks
and hotlinks. The RealiMation STE makes extensive use of properties for many of its
processing operations. For example, object edit boxes (those that appear when picking) and
their original objects are tied together using properties, as are the graphical representation of
lights and the lights they represent.

A Trip through the Display Pipeline
Given a scene graph, what happens when an application calls RTDisplayView() to draw a
picture on a screen?

If the view is running on a remote network server (i.e. in a RealiNet environment), the server
issues an instruction for it to process the view remotely. The local machine (the one on which
the application is running), then returns immediately to the application. If not running remotely,
RTDisplayView() carries on processing as below.

The camera transformation matrix and clipping information is updated as necessary to allow
for any changes in time (time is set by calling RTSetViewTime() before calling
RTDisplayView()). This allows for cameras that are on paths, moving with or looking at
instances. Any lights in the atmospheric attached to the view are then updated if on paths,
moving with or looking at instances.

The view background is then cleared (although this can be disabled) by either filling in with a
solid colour or by using a background image. If the image has been defined as a scrolling
image (i.e. it moves based on camera direction), then this is taken into account here. If
required, the depth buffer is also cleared. In cases where there is a depth buffer image, this
image is used to set the initial z values for all pixels. If no depth image is being used, then the
depth is cleared to the maximum allowable value.

Once the projection, lighting, and background has been taken care of, the instances in the
view are iterated through one at a time.

An instance has its position and size evaluated according to the current time (which may be
overridden), which is then used to evaluate the level of detail models attached to the instance.
Any models (i.e. geometry objects) that are candidates for display after this test are checked
to see if they will have a visible effect on the view (based on view projection etc.).

When the object is accepted for further processing, the faces are optionally back faces
culled and illuminated (this phase can be skipped - geometry objects can be pre lit or use
fixed colours). The points are transformed into camera space and the final polygons
dispatched to the renderer. Note that some RealiMation drivers (such as for OpenGL), do
this culling / lighting / transformation stage themselves, allowing for hardware geometry
acceleration.

Once all the faces have been drawn for the geometry object, the display process loops
through any instances attached to the geometry object.

When the last instance in a view has been processed, the renderer is given the opportunity to
flush any buffered polygons (for example, any transparent polygons should be left until last),
and any per-frame tidy ups required.

That is the end of RTDisplayView() , but we still have not got an actual picture on the
display. This final stage is executed by called RTSwapPage, supplied the channel handle.
This executes the command to take the off-screen rendered 3D image and make it visible.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP002

THE REALIMATION SCENE GRAPH PAGE 7

This is not part of RTDisplayView() , as a channel can have several views attached, and
so will want to do several calls to RTDisplayView() with only one call to swap the page.
Another reason for not incorporating the swap page in the display view call is so that 2D
overlays (text, cockpit displays etc.) can be drawn in the offscreen buffer, and then everything
made visible in one step.

One important point is that instances and geometry objects can have their own set of display
overrides (e.g. pre-illuminated, shading mode, hidden surface removal, time, etc.). These
are handled automatically as part of the display pipeline by effectively pushing and popping a
state stack, giving a huge amount of control over the speed and visual effects possible with
RealiMation just by altering object data.

Summary
The RealiMation scene graph - “RealiBase” - provides a simple yet powerful way of managing
real time 3D databases in a multi channel, possibly multi-machine, environment. The data
driven handle based interface minimizes API calls and allows for easy extensions in the
future, both by adding new connections and new object types.

The RealiMation display pipeline traverses only those parts of the scene graph that will have
an effect on the final display, and uses data contained within instances of objects to affect
performance and visual effects.

