
REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 1

TP004: Your First RealiMation Windows TM Appli-
cation

Introduction
This document assumes a familiarity with C++ programming techniques, Microsoft Developer
Studio and ClassWizard. the RealiMation STE and the basic RealiMation Windows application
discussed in Technical Paper no. 003 (“Using RealiMation in Microsoft WindowsTM

Applications”).

This document will lead you through the process of enabling the user to control the motion of
objects within a RealiBase by using a joystick.

The steps described are:

1. Creating the basic application.
2. Taking control of an object.
3. Making the object move via program calls.
4. Making the object move under joystick control.
5. Improving the usability of the application.

Creating the Application
First you will need to create the basic RealiMation application. To do this run up Microsoft
Developer Studio and create a new project based on the “RealiMation AppWizard”. Enter
“TankApp” as the name of the application.

If you don’t have this as a choice see the file “RealiMation AppWizard.txt” in the SDK directory.
This document explains how to install the wizards for your compiler.

Once the AppWizard has completed, build the executable. It is recommended that the Debug
build is used for the rest of this tutorial. Select this from Developer Studio from the ‘Build |
Set Active Configuration’ menu option, and choose “TankApp - Win32 Debug”.

When you try and compile up the debug version, your compiler will show an error in
TankApp.cpp. This error is generated from the source code with a #error directive to warn
you that you are compiling a debug version of your application without using the debug
version of the RealiMation libraries. To remove this error, you should add “_RMDEBUG” to you
compiler preprocessor definitions for the debug build only. To do this select ‘Project | Settings’
from the main menu and click on the C/C++ tab. Ensure that “Win32 Debug” is the selected
target then add “,_RMDEBUG” to the end of the preprocessor definitions section.

Alternatively, if you do not want to take advantage of the debugging facilities provided by
RealiMation, simply comment out the #error line in the code.

Rebuild the application and run it.

The first thing that happens, assuming you are running the _RMDEBUG version, is that you get
asked whether to turn on memory tracing or not. This is a feature enabled by the debug
libraries (but controlled from the application) that helps track down memory usage and leaks
within any RealiMation components that you may be using. See the
CTankApp::InitInstance() method for more details. Select “No” to the question.

The main application window then appears, with a large cross in the display area and a
message saying “No Current RealiBase”. Go to the ‘File’ menu, and select ‘Open’. This
prompts for a RealiBase file to use. You can load any file, but for now load “Helisim2.rbs”,
which is in the “Samples\Helisim” directory of your RealiMation CD.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 2

On selection of the file, your application displays the following dialog:

Since this is the first time that the tank application has been run, it does not have any display
drivers set up for it, and so asks the user. Press the ‘Browse’ button, and select the “Bin”
directory under your main RealiMation installation. The application then examines all files in
this directory, determining if they are display drivers or not. The resulting list displayed in the
above dialog shows all the drivers it has found. Select all those drivers you may wish to use
in the future by clicking in the checkbox to the left of each entry. You have now registered with
the application all the drivers you may want to dynamically swap between in the future. See
the file Driver.cpp for more details.

When you hit OK, the program asks you to choose a default driver from the list. Choose one
that suits you (probably the same as you have been using for the STE). The ‘Alternate’ tab
allows applications to have a driver that only works in a window, and provides an emergency
escape back to the Windows desktop if you have been using a full screen driver as the
primary device. See source code for more details.

Please note that all this driver setup will only happen the first time you run the application. If,
when you first run your application, the above dialogs do not happen, then it simply means
that you may have run a RealiMation custom AppWizard program before, and the registry
entries are being reused.

After you select OK, a picture should appear. You can then use the menu options to control
the scene in a few simple ways, such as changing the camera, animating the scene, and
switching display mode and driver.

Once you have built the application as described, the code examples given below can be
typed or pasted into your source.

Taking Control
To take control of an object we need to select the instance (“placement” in STE terms) and
store its ID. We also need to remove any paths (“actions” in STE terms) attached to the
instance so that we can move it anywhere independently. However, any actions on sub-
placements are left intact so that, for example, the turret still swings from side to side.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 3

Preparing a RealiBase to Use

This tutorial will use a copy of an existing RealiBase. Run the STE and load “Helisim2.rbs”
as described above. We will make some changes to this and save it to your hard disk under
a different name to be used by the tank application.

From within the STE, rename the placements “Target1” to be “Tank 1. Then drop the “Free
camera” onto the view and position it so that you can see the this tank. Ideally this should be
just behind and above the tank we wish to control.

To save the RealiBase, we have two choices. Because the original is on a CD, we cannot
write back to it. The most obvious solution is to use the File | Save As option, and save the
file to your hard disk somewhere and call it “Control.rbs”. The drawback of doing this is that
the textures will still be stored on the CD, which means they may not be found when loading
the RealiBase from hard disk. This is where the ‘Deploy’ operation comes in very useful, as
it can take copies of all referenced textures and place them all in a central place along with the
RealiBase file itself.

From the STE’s ‘File’ menu, select ’Deploy’. Choose a directory on your hard disk - note that
if the directory you type in does not exist, then it will optionally be created for you. When this
operation is complete, all the images referenced by this RealiBase will be copied into that
directory, along with the RealiBase file itself, which is still called “Helisim2.rbs”. Use the ‘File
| Save As’ command to save the RealiBase as “Control.rbs” in the same directory.

Now exit the STE, and run the tank application again, but use the new “Control.rbs” file. Once
you have loaded this, it is added to the recent file list on the File menu, which will make testing
easier as the tutorial progresses.

Using the RealiBase

Now we have created a RealiBase, we can add code to take control of named objects. This
entails getting hold of a handle to the object (the “ID”), and removing any predefined paths
that the instance may be using.

Using Microsoft Developer Studio add a menu option called “Grab Tank 1”, and use
ClassWizard to add a response function to the CTankApp class. Edit this code to return the
ID of “Tank 1” using the call:

 RTGetIDFromName(“Tank 1”);

Then remove any existing path by calling:

 RTSetObject(tank_id, RTNullID, RTPathID);

(Note: this will work even if the object has no existing path). Your code should look like this:

/*—————————————————————————————————————*/
void CTankApp::OnControlTankGrabTank1()
{
 // Control tank 1

 // Look in RBS for object named “Tank 1”
 rtID tank_id = RTGetIDFromName (“Tank 1”);

 if (tank_id != RTNullID)
 {
 // Remove path from instance
 RTSetObject (tank_id, RTNullID, RTPathID);
 }
}

Build and run this version of the application. Play the animation (F10 key), and select the new
menu option to take control of “Tank 1”. When you press play you will notice that the tank has
apparently disappeared from the view! To find out what has happened we need to load the
modified RealiBase into the STE, and use the STE’s model query features to quickly examine

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 4

the modified data. Therefore we need the application to save the RealiBase. You could
either add a menu option to do this or add the call:

 RTSaveRealiBase (“debug.rbs”, NULL, RTSaveAll);

into the code after removing the path.

Inserting calls to RTSaveRealiBase() into your code and then using the STE to view the
results can be a useful tool while developing and debugging your application. In effect, it is
using the STE as a “data debugger”.

In the STE, load the debug RealiBase, find the views lister and select “Tank 1”. Hitting F3 to
fit the view to this object or the spacebar to show the properties page will show that the tank
is now at the world origin (i.e. its position is x=y=z=0). The reason is that, when originally
adding a path to an instance, that path determined the instance’s position in the world, which
is why it disappeared when the path is removed . The solution is to evaluate the path at the
current time and assign the resulting transformation to the instance. To do this you will need
to call RTEvaluatePath() to return the position and scale of the object and then
RTSetInstance() to apply these values to the instance.

Your code should now look something like this:

/*—————————————————————————————————————*/
void CTankApp::OnControlTankGrabTank1()
{
 // Control tank 1

 // Look in RBS for object named “Tank 1”
 rtID tank_id = RTGetIDFromName (“Tank 1”);

 ASSERT (tank_id != RTNullID);

 // Unhook it from any predefined action
 rtID pathid = RTInqObject (tank_id, RTPathID);

 if (pathid != RTNullID)
 {
 // Get current position of instance, then assign it permanently
 // to the instance when the path has been removed.
 rtPosition pos;
 rtScale scale;

 RTEvaluatePath (pathid, theAnimations.Time(), NULL, NULL, &pos, &scale);

 // Remove path from instance
 RTSetObject (tank_id, RTNullID, RTPathID);

 // Move the instance to the correct place in the scene
 RTSetInstance (tank_id, &pos, &scale);
 }
}

We can also add a handler for an UPDATE_COMMAND_UI event, using ClassWizard, and
inserting the following code:

/*—————————————————————————————————————*/
void CTankApp::OnUpdateControlTankGrabTank1(CCmdUI* pCmdUI)
{
 // Disable option if no tank 1 object
 BOOL bEnable = (RTGetIDFromName (“Tank 1”) != RTNullID);
 pCmdUI->Enable (bEnable);
}

If you build and run this version you will see that the tank stops moving along the road at its
current location when you select the menu option. The “OnUpdate ” method simply greys out
the menu option if there is no object called “Tank 1” in the current RealiBase. Supplying this
method means that we can change the

 if (tank_id != RTNullID)

line to an: ASSERT (tank_id != RTNullID);

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 5

Since the user interface should never allow the grab tank command unless there is an object
in the RealiBase of the right name, using an assertion can be a big debugging aid, and one
which will not get compiled into a release build.

Adding Animation
The first task is to make the object spin. This illustrates animating an object under program
control and acts as a check that we are doing the right steps to grabbing objects and
manipulating them.

For the purposes of this tutorial we will change the CAnimate class to give it knowledge of an
object to be controlled, and ultimately to read joystick input. In practice, your own applications
may create a separate control class, or find some other place in the code to implement this
functionality.

The way to do this is to add a public method into the CAnimate class.

/*—————————————————————————————————————*/
void CAnimate::SetControlledObject (rtID id)
{
 // Sets the ID to be controlled every tick by a joystick
 m_JoyObject = id;
}

Where m_JoyObject is a protected member variable of type rtID . Add this to the CAnimate

class declaration (in animate.h), and initialise its value to RTNullID in the CAnimate
constructor.

Add a call to this method in CTankApp::OnControlTankGrabTank1() , which can be inserted
after the ASSERT statement.

 ASSERT (tank_id != RTNullID);
 // Store this ID
 theAnimations.SetControlledObject (tank_id);

Now that we have the object ID we can make it spin, via a new CAnimate method called
ControlObject() .

In the method CAnimate::Tick (void) add the lines:

 // Update controlled object
 ControlObject();

just before the call to pview->DrawView() . Once this method has been written it will cause
the position of the controlled object to be updated at each animation interval. Create a
protected method called ControlObject to the CAnimate class, and add the following code
to implement it:

/*—————————————————————————————————————*/
void CAnimate::ControlObject (void)
{
 // Check that there is an object to control
 if (m_JoyObject != RTNullID)
 {
 rtPosition pos;

 // Read the current position of object
 RTInqInstance (m_JoyObject, &pos, NULL);

 // Update its position
 pos.yaw += RMDegToRad (5.0f);
 RMReduceAngle (pos.yaw); // Ensure in range 0 - 360 degrees

 // Write the changes back
 RTSetInstance (m_JoyObject, &pos, NULL);
 }
}

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 6

This function checks that an instance to control has been set. If an instance has been defined,
its position is inquired, the yaw is incremented by 5 degrees and given back to the instance.

If you build and run this version you will see the tank stop moving along the road and start to
spin when you select the menu option.

The application still doesn’t do anything useful, but we have illustrated how easy it is to make
an object do something under application control rather than moving along a predefined path.
The next step is to add joystick control.

Adding Joystick Control
All the changes are now made in the CAnimate methods. For the purposes of this tutorial the
Windows multimedia API’s are used to access a joystick attached to your machine.
Developers can use their own input gathering mechanisms if they prefer.

You will need to add the following as protected member variables to CAnimate to store
information about the joystick:

 JOYCAPS m_JoyCaps;
 JOYINFOEX m_JoyInfo;

Then add the following lines to CAnimate::SetControlledObject() to initialise the joystick:

 // Read joystick capabilities and ranges
 m_JoyInfo.dwSize = sizeof (JOYINFOEX);
 m_JoyInfo.dwFlags = JOY_RETURNALL;

 joyGetDevCaps (JOYSTICKID1, &m_JoyCaps, sizeof (m_JoyCaps));

And change CAnimate::ControlObject() to look like this:

/*—————————————————————————————————————*/
void CAnimate::ControlObject()
{
 // Check that there is an object to control
 if (m_JoyObject != RTNullID)
 {
 // Read Position of object, modify with joystick
 rtPosition pos;

 RTInqInstance (m_JoyObject, &pos, NULL);

 // Handles joystick events
 MMRESULT result = joyGetPosEx (JOYSTICKID1, & m_JoyInfo);

 if (result != JOYERR_NOERROR)
 {
 return;
 }

 // Scale X & Y to +/- 10 Ord value
 Ord down;
 Ord across;

 across = 20.0F * (Ord)(m_JoyInfo.dwXpos - m_JoyCaps.wXmin) /
 (Ord)(m_JoyCaps.wXmax - m_JoyCaps.wXmin) - 10.0F;
 down = 20.0F * (Ord)(m_JoyInfo.dwYpos - m_JoyCaps.wYmin) /
 (Ord)(m_JoyCaps.wYmax - m_JoyCaps.wYmin) - 10.0F;

 // Update the position of the object
 pos.pos.x += across;
 pos.pos.z -= down;

 // Write the changes back
 RTSetInstance (m_JoyObject, &pos, NULL);
 }
}

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 7

You will need to add the following code to “stdafx.h ” in order to get the above code to
compile:

#include <mmsystem.h>

and insert “winmm.lib” in the ‘Object/library modules’ field on the ‘Project | Settings | Link’
dialog to get the application to link.

Joysticks only return positive values, so to be able to move left and backwards the input has
to be shifted into negative coordinates, hence the “- 10.0F “ when calculating the joystick
position.

If you build and run this version you will see that the tank moves a large distance for a
relatively small movement of the joystick - you can easily lose sight of the tank. You can
either scale the movement down by changing the hard coded values (20.0 and 10.0) or by
inquiring the size of the object and using that to modify the numbers. It will also be useful to
add a “dead zone” to the joystick movement around its central position, otherwise it is very
difficult to stop the tank from moving

Using the bounding box of the controlled object to scale joystick movement is easy to do.
Add the following member variable to the CAnimate class:

 Ord m_JoyScaleFactor;

And the following code at the end of CAnimate::SetControlledObject() :

 // Inquire bounding box of object
 rtBox3d box;
 RTInqObjectBox (m_JoyObject, 0.0f, &box);

 rtVector diag;
 RMBoxDiagonal (&box, &diag);
 m_JoyScaleFactor = RMV3Length (&diag);
 // Safety check
 if (m_JoyScaleFactor < Epsilon)
 m_JoyScaleFactor = 1.0f;

This sets up a scale factor based on the diagonal length of the bounding box of the controlled
object. The joystick reading code then changes to:

 Ord scale_offset = m_JoyScaleFactor * 0.5f;

 across = m_JoyScaleFactor * (Ord)(m_JoyInfo.dwXpos - m_JoyCaps.wXmin) /
 (Ord)(m_JoyCaps.wXmax - m_JoyCaps.wXmin) - scale_offset;
 down = m_JoyScaleFactor * (Ord)(m_JoyInfo.dwYpos - m_JoyCaps.wYmin) /
 (Ord)(m_JoyCaps.wYmax - m_JoyCaps.wYmin) - scale_offset;

Finally, we can add a joystick dead zone to prevent movement when the joystick is around its
centred state. For the purposes of this example, we simply filter out small changes in the
across and down factors. This is done by changing the position update statements to:

 // Update the position of the object
 if (RMFabs (across) > (m_JoyScaleFactor * 0.1f))
 pos.pos.x += across;
 if (RMFabs (down) > (m_JoyScaleFactor * 0.1f))
 pos.pos.z -= down;

If you now build and run this program, the tank should not move until the joystick is moved
beyond a certain threshold.

You will also note that the camera remains at its initial location and the tank can very quickly
disappear off the screen. Therefore we need to make sure we can always see the object we
are controlling.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 8

Usability Issues

Getting the camera to follow the object being controlled

You can do this in two ways, the first is to use the STE to make the “Free camera” always
point at “Tank 1”, by dragging the “Tank 1” instance and dropping it on “Free camera”. This
would be OK for this exercise in its current state, but not for the more general case in which
a user could control any object, since we would like the camera to dynamically attach itself to
whatever object the user selected to control.

The second solution is to change the code to make the camera always point at the object at
the time the it is selected. To do this you will need to modify
CTankApp::OnControlTankGrabTank1() to inquire the current camera and then call
RTSetAttachment() to make that camera point at the tank. Add the following code to the
end of the function:

 CMainFrame *pFrame = (CMainFrame*) m_pMainWnd;
 ASSERT (pFrame);
 CChannel3D &channel = pFrame->Get3DView();
 rtID view_id = channel.GetViewID();
 rtID camera_id = RTInqObject (view_id, RTCameraID);

 // RTSetAttachment requires a list of instances
 rtID attach_list[2] = {tank_id, RTNullID};
 RTSetAttachment (camera_id, attach_list, RTFollow);

This is the same code as the STE uses when a user drops an instance on a camera. The
tank will now always be visible (unless it moves behind a hill or building in the scene!). Build
and run the application to see the new functionality.

Getting the camera to move with the object being controlled

Instead of keeping the camera at its current position, and always pointing towards the moving
vehicle, it would be nice to physically attach the camera to the tank so that the viewpoint
appears to move with the vehicle.

To enable this, simply replace the final argument in the call to RTSetAttachment() with
RTMoveWith in the CTankApp::OnControlTankGrabTank1() method. This is equivalent to
dragging a camera and dropping it onto the instance from within the STE. This will, however,
place the camera at the tank’s local origin, so we also need to change the camera’s offset
above and behind the object to which it is attached. Insert the following code to move the
camera backwards and upwards so that it can be seen, after calling RTSetAttachment() as
above:

 // Move camera back and up
 rtPosition offset;
 RTInqCamera (camera_id, NULL, &offset);
 offset.pos.y += 3.0F;
 offset.pos.z -= 5.0F;
 RTSetCamera (camera_id, NULL, &offset);

Sine we are only setting the camera’s offset, we can pass NULL for the ‘position’ parameters
of RTInqCamera() and RTSetCamera() .

The camera will now move with the tank keeping a constant distance behind it all the time.
Notice how the camera motion is purely a function of the linkage between the tank instance
and the camera, freeing the application code from having to explicitly move both the tank and
the camera.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 9

Improving the motion dynamics

Currently, the tank can only move in directions parallel to the x and z axes of the world, and
cannot alter the direction it is facing when the user takes control. This is hardly realistic, and
makes driving in any direction which is not parallel to those axes (e.g., down the road) very
difficult, or looking at objects in the scene from a different angle impossible.

The simple solution is to change the effect the joystick has on the tank. Instead of linking left/
right movement directly to the x-axis, we can link it to the yaw orientation of the tank :

 // Update the position of the object
 if (RMFabs (across) > (m_JoyScaleFactor * 0.1f))
 {
 pos.yaw += RMDegToRad (across);
 }

And instead of linking the forward/backward joystick movement to the z-axis, we can alter the
position of the object based on the direction it is facing, allowing the tank to drive forwards
and backward in whatever direction it is currently facing :

 if (RMFabs (down) > (m_JoyScaleFactor * 0.1f))
 {
 pos.pos.x -= RMSin (pos.yaw) * down;
 pos.pos.z -= RMCos (pos.yaw) * down;
 }

This provides a much more useful motion dynamic. However, it does still suffer from one
‘feature’ - the tank moves every time the frame is drawn, and takes no account of how long
that frame took to draw. This means that as the frame rate increases and decreases, then the
apparent speed to the tank will also increase/decrease.

The solution is to link the amount the tank moves to the time since the last frame was drawn.
Each time we move the tank, we can calculate the ‘time delta’ since the last time, and use this
value as a scale factor.

To do this, we need to add a member variable m_LastTime to the CAnimate class definition.
We will use this to hold the value of the time when the tank was last moved :

class CAnimate : public CObject

 ...

 rtID m_Terrain; // Ground object for terrain following
 Ord m_LastTime; // For scaling object movement to time

We initialise this variable in the CAnimate::SetControlledObject() routine

 m_Terrain = RTGetIDFromName (“Terrain”);

 // Initialise the m_LastTime to ‘MaxFloat’, this means that
 // the first time we compare the current time against the
 // ‘last time’, we will always get a negative number
 m_LastTime = MaxFloat;

Before we move the tank, we inquire the current time and calculate the difference from the
m_LastTime value. By checking that this difference is positive, we can detect the first time
the tank is moved, since the m_LastTime will be MaxFloat , making the difference negative :

 across = m_JoyScaleFactor * (Ord)(m_JoyInfo.dwXpos - m_JoyCaps.wXmin) /
 (Ord)(m_JoyCaps.wXmax - m_JoyCaps.wXmin) - scale_offset;
 down = m_JoyScaleFactor * (Ord)(m_JoyInfo.dwYpos - m_JoyCaps.wYmin) /
 (Ord)(m_JoyCaps.wYmax - m_JoyCaps.wYmin) - scale_offset;

 // Take account of how long it is since we drew the last frame -
 // the longer the time gap, the more we need to move.
 // This means the tank will move at the same speed, taking the
 // same amount of time to driver between two points, regardless of
 // the frame rate

 // Time factor - depends on how
 Ord current_time = RTInqClock();

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 10

 Ord distance_sfactor = 1.0F;
 Ord angle_sfactor = 1.0F;

 // Amounts to scale the tank movement to
#define TANK_SPEED 30.0f
#define TURN_RATE 12.0f

 // If the current time is later than the last time,
 // then we scale the distance and angle...,
 if ((current_time - m_LastTime) >= 0.0F)
 {
 Ord time_delta = current_time - m_LastTime;
 distance_sfactor = time_delta * TANK_SPEED;
 angle_sfactor = time_delta * TURN_RATE;
 }

 // Store the current time for next time round
 m_LastTime = current_time;

 // Update the position and orientation of the object...
 if (RMFabs (across) > (m_JoyScaleFactor * 0.1f))
 {
 // Rotate the object about the y-axis
 pos.yaw += RMDegToRad (across * angle_sfactor);
 }

 if (RMFabs (down) > (m_JoyScaleFactor * 0.1f))
 {
 // Move the object, depending on it’s orientation
 pos.pos.x -= RMSin (pos.yaw) * down * distance_sfactor;
 pos.pos.z -= RMCos (pos.yaw) * down * distance_sfactor;
 }

Terrain following

Currently the tank can only move in its original plane, since the joystick code only changes the
X and Z components of the tank’s position. This means that it moves straight through any
hills and flies over any valleys. The controlled object needs to be made to follow the terrain.
This is done by using the RTInqHeight() function, which gets the height (y value) of geometry
given the X and Z locations. All we need to do, therefore, is to find the object being used to
represent the ground, and then get the elevation of the ground at our current tank position.
This value is then used as the Y component of the object position.

To this end add a new protected member variable m_Terrain to CAnimate and the following
code to CAnimate::SetControlledObject() (assuming that the ground object is called
“Terrain” in the RealiBase):

 m_Terrain = RTGetIDFromName (“Terrain”);

You may also want to initialise the new member variable to RTNullID in the constructor.

Then in CAnimate::ControlObject() add the following lines of code after the position of
the object has been updated and before the call to RTSetInstance() :

 rtHeight ht;

 if (RTInqHeight (m_Terrain, &pos.pos, &ht))
 {
 pos.pos.y = ht.y;
 }

Build and run the application. When you driver the tank around, it will now climb slopes, and
go up and down the hills. The tank stays horizontal, however, regardless of the slope of the
land. Improving this is left as an exercise for the reader - Hint: You can use the face normal
returned in the rtHeight structure and change the orientation of the tank to match.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP004

YOUR FIRST REALIMATION APPLICATION PAGE 11

Exercises

Let the user to select the object to control

As it stands the application can only control the object called “Tank 1”. This can be changed
by modifying the code, but it would be nice to enable the user to select the object to control.
The following are suggestions for implementing this feature:

• Change the menu option to present the user with a dialog into which the name can
be typed or a picked from a list of instances.

• Let the user select the object using the mouse. Hint: See RTRayTestView() .

Further improving the motion model

We started with a crude movement model, allowing motion parallel to the x and z axes. We
improved this by allowing the tank to turn, and move forwards and backwards. This model is
still very simple, and a long way from ‘realistic’.

You might want to add acceleration and deceleration by reading how far the joystick has been
moved, or simulate driving on different surfaces, with the tracks possibly slipping at different
rates - the possibilities are endless.

The RealiGame source code sample implements other motion models, or you may already
have your own that you can use.

Add Special Effects

The RealiMation Technical Note TP009 : Creating Explosion Effects with RealiMation, extends
this tutorial to show how more dynamic effects (in this case explosions) can be implemented
with the RealiMation API.

Summary
With only a few lines of code, we have added a terrain following joystick controlled tank
that has a camera attached to it to the basic RealiMation AppWizard generated program.
This application can easily be further extended to make even more use of the RealiMation
API.

