
REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP008

OVERLAYS – 2D FUNCTIONALITY PAGE 1

TP008: Overlays - 2D Functionality

Introduction
For many real-life applications, a simple 3D view is usually not sufficient. Some form of extra
information drawn over the view is required, which can be as simple as a few lines (such as
the axes display in RealiView or the STE), or as complicated as a full-blown cockpit, with
cockpit instrumentation and head-up display (HUD).

The RealiMation API provides a number of functions which allows your application to show
this sort of functionality. This document will describe the functions available to a developer,
giving examples of their use. A basic familiarity with RealiMation is assumed.

The 2D functions can be divided into a number of general types, each addressing a different
area of funtionality :

• Simple 2D drawing functions
• 2D Image function
• Screen space polygons
A developer can select any mixture of functions in order to best achieve the desired result.
We will describe each type in further detail, giving examples of their use.

2D Drawing Functions Work In Channel Space
All RealiMation 2D functions take channel coordinates (these normally correspond directly to
pixel coordinates) - they can be used independently of the number and size of any views
attached to the channel.

In order to reduce processing requirements, and hence speed up display, coordinates passed
into these 2D functions are not checked for validity against the channel size. It is the developer’s
responsibility to ensure that invalid coordinates are not passed into the functions.

Simple 2D Drawing Functions
These routines provide simple 2D drawing commands, producing lines, circles, filled rectangles
and polygons :

RT2DCircle (rtID id, DWord rad, const rtPixel *pix);
RT2DLine (rtID id, const rtPixel *p1, const rtPixel *p2);
RT2DRectangle(rtID id, const rtPixel *p1, const rtPixel *p2);
RT2DPolygon (rtID id, DWord n, const rtPixel *pix);

The drawing colour is defined by the function RT2DSetColours() . For the above functions,
only the foreground colour is used. However, you can also draw text on the channel, using the
RT2DText() function. By using the RT2DSetBackgroundMode() function, you can decide
whether to draw a filled rectangle round the text (in the background colour set by
RT2DSetColours()), or have the background showing through.

2D Image Function

RT2DBitmap (rtID id, const rtPixel *pix,
const rtBitmap *bitmap,
DWord res0, void *res1);

This function allows the application writer to effectively ‘Blit’ a rectangular area of memory
onto the channel. This area is copied directly onto the frame buffer, so the image needs to be
in the correct pixel format (i.e. correct bit-depth and RGB masks) for the display channel. To
help this, RealiMation provides a number of functions for querying the correct pixel format

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP008

OVERLAYS – 2D FUNCTIONALITY PAGE 2

from the channel (RTInqBestBitmap()), and utilities to help you change and scale the
image (RFScaleBitmap(), RFChangeBitmapDepth()).

Since the image is copied directly to the frame buffer, it avoids any contact with the texture
units and texture memory on the graphics card (if present). This means you will get exactly
what is in the image, with no additional filtering. It also means that texture memory on the card
does not get used up

However, this does mean that the entire image must be transferred to the frame buffer every
time it is needed to be drawn. On some hardware, this transfer can take a significant amount
of time (depending on the exact hardware and size of image). RT2DBitmap() is really
designed either for large images which get drawn only a small number of times (such as the
sides of cockpits, or splash panels showing instructions), or for small areas, such as individual
controls in a cockpit display.

As an example, consider the following scenario. The channel is an area 640x480 pixels.
Along the bottom is a strip 180 pixels high, showing various controls against a background
representing a cockpit. The rest of the screen being a 3D view on the outside world. The
majority of the bottom strip does not change, but small areas of it (representing individual
controls) do:

First, we set the size of the 3D view to be 640x300 :

RTSetViewPortSize (view_id, 640, 300);
RTSetViewPortPosition (view_id, 0, 0);

This limits the view to the top section of the screen.

Next, outside the main loop, we use the RT2DBitmap() function to draw an image
representing the unchanging part of the display.

The pixel_image is an rtBitmap structure, containing a pointer to the image information.
This image can either be constructed ‘by-hand’ (using RFConstructBitmap()), or more
likely, loaded using the RFLoadBitmap() functions, and then changed to the correct bit-
depth for the display.

rtPixel bitmap_position;
bitmap_position.x = 0;
bitmap_position.y = 300;
RT2DBitmap (channel_id, &bitmap_position, &pixel_image, 0, NULL);

One point to note, on display drivers capable of double-buffering (which includes most), this
only writes the image into one of the buffers. If you leave the code like this, then every time
you call RTSwapPage() , the 2D bitmap will appear and disappear, seeming to flicker. You
also need to draw the same image on the other buffer. If you call RTSwapPage() , followed
by another call to RT2DBitmap() , with the same parameters, then the image will be present
in both buffers.

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP008

OVERLAYS – 2D FUNCTIONALITY PAGE 3

Finally, during the main program loop, you can call RT2DBitmap() to update the small areas
covered by the individual controls. By keeping these images small, you can reduce the amount
of overhead required to update the controls.

In release v4.3.5, new functionality was added to allow more flexibility in this type of 2D
overlay. The screen space polygons are the result of this, and can easily be used instead of
RT2DBitmap() in the above example to display the individual controls.

Screen Space Polygons

RT2DScreenPolygon (rtID channel_id, rtScreenPolygon *poly,
 rtID material, DWord flags);

The 2D screen space polygon is perhaps the most powerful of all the 2D functions provided
by RealiMation. It allows the user to send 2D, optionally textured, polygons (specified in
channel coordinates) direct to the rendering engine. This means they can take advantage of
any texture options (such as bilinear filtering, alpha-channels, etc.) available for textures on
‘normal’ 3D polygons, along with any hardware acceleration. In effect, this provides an
‘immediate mode’, allowing the developer direct rendering of non z-buffered polygons.

The rtScreenPolygon structure provides the basic coordinates for the polygon on screen.
Please note, these coordinates must be valid for the channel - in order not to add extra
processing overhead, no check is made for valid coordinates. The use of invalid coordinates
is not defined - many display drivers do protect themselves, but this is not guaranteed and
may lead to a crash.

In addition, the rtScreenPolygon structure also contains a list of texture coordinates which
are used if a material with a texture image is applied to the polygon.

The material id parameter points to a standard RealiMation material, as would be used
by any 3D polygon. However, since 2D screen space polygons are not lit, the reflectance
values are not used. The colour, transparency and image values are used, allowing the polygon
to blend in with the 3D view beneath. An example of this would be simulating a sheet of glass
over an area (or all) of the channel.

The use of a texture image with an alpha-channel can allow ‘cut-outs’ to be placed in the
overlays. This can produce overlays such as window frames or targeting sights, where the
underlying 3D view can be seen through gaps in the 2D overlay.

Instead of using the colour definition from the material, it is possible to specify individual
colours at each vertex of the polygon. This can generate 2D polygons with colours blending
across them. Simply use the RTScreenPolyUseColours flag in the last parameter, and make
sure the colours array in the rtPolygon structure is filled in. This colour information will override
the material colour, but the other properties of the material (e.g. transparency, images) will
still be used.

To show one use of screen space polygons, take the example of a flight simulator application.
Over the top of the 3D view of the world, we want to place a head-up display, giving information
on the aircraft attitude.

The HUD consists of a series of horizontal, parallel lines, and can rotate with the aircraft’s
roll, and move up/down with the aircraft’s pitch, within certain limits. The HUD is designed to
be overlaid on top of a 3D view, so the user can clearly see the view underneath :

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP008

OVERLAYS – 2D FUNCTIONALITY PAGE 4

We create an image showing the horizontal bars and numbers in a separate paint package,
complete with alpha-channel which has the spaces between the bars at 100% alpha.

Coordinates for the polygon corners are based on a square, centred on the middle of the
view (x_centre, y_centre) , and then rotated about that centre by the roll angle of the
aircraft. So, the coordinates for the top left corner of the polygon would be :

x = -RMCos(roll_angle) * hud_width / 2 -
RMSin(roll_angle) * hud_height / 2 + x_centre;

y = -RMSin(roll_angle) * hud_width / 2 +
RMCos(roll_angle) * hud_height / 2 + y_centre;

This takes care of the roll angle, all we need to do is make the display move up and down with
the pitch angle of the aircraft. We can do this by altering the texture coordinates of the polygon,
so that only a small section of the bitmap is displayed on the screen polygon.

So, with 0 degrees pitch, we could set the texture coordinates as

 top left (0, 0.25) top right (1, 0.25)

 bottom_left (0, 0.75) bottom right (1, 0.75)

and we only get a horizontal band across the centre of the bitmap shown. By altering the y
part of the texture coordinates in relation to the pitch angle, we can get the HUD to move up/
down :

// Calculate the amount of texture offset -
//
// ‘texels_per_degree’ is a floating point constant
// which relates to the amount of spacing between the
// bars in the image, and will depend on the image used
//
// As an example, if we have an image which is 256 pixels
// high, in which 4 pixels represents 1 degree of pitch,
// then
//
// Ord texels_per_degree = 4.0F / 256.0F;
//
// ie, what fraction of the height of the image does
// 1 degree cover.

Ord texture_offset = RMRadToDeg(pitch_angle) * texels_per_degree;

// Set up the texture coordinates for the default position
// (ie, 0 degrees pitch)
RMV2Set (screen_poly.tex_pts[0], 0.0F, 0.25F);
RMV2Set (screen_poly.tex_pts[1], 1.0F, 0.25F);
RMV2Set (screen_poly.tex_pts[2], 1.0F, 0.75F);
RMV2Set (screen_poly.tex_pts[3], 0.0F, 0.75F);

REALIMATION 3D DEVELOPER TOOLS TECHNICAL PAPER NO TP008

OVERLAYS – 2D FUNCTIONALITY PAGE 5

// Now move the coordinates to give the correct offset
for (int i = 0; i < 4; i++)
{
 screen_poly.tex_pts[i].y += tex_offset;
}

Since the polygon is being drawn by the rendering engine (rather than direct to the frame
buffer like RT2DBitmap()), there are a number of considerations which can affect the end
result if you are using a textured screen space polygon. These may be desired effects or not,
depending on the exact circumstances :

• The image will be downloaded onto the texture memory used by the graphics card. This
means that you don’t have to repeatedly transfer the image to the graphics card every
time you need to draw it. This, combined with the fact that you can make use of hardware
acceleration, makes the screen space polygon much faster than RT2DBitmap() .

• However, many graphics cards can place restrictions on the sizes of images they can use
for textures. Many limit the maximum size, and require that each dimension of the image
must be a power of two (e.g. 64, 128, 256, etc.). If the image used for a texture does not
satisfy these conditions, then RT2DScreenPolygon() will still work, but the image may
be resized internally. This may result in extra filtering being applied to the image, resulting
in potentially unexpected blurring of the image. Details of limitations imposed by individual
drivers can be found using the RTInqDriver() function.

Differences in sizes between the pixel coordinates in the rtScreenPolygon structure, and
the size of the image, can result in bilinear filtering or mip-mapping being applied to the
image (if the relevant image flags are set up). As an example, if the image is 64x64, and
RT2DScreenPolygon() is used to draw a square region of 128x128 (with texture coordinates
set up to (0, 0), (0, 1), (1, 1) and (1, 0)), then the resulting polygon will be bilinear filtered,
again resulting in potentially unexpected blurring of the image.

When to call the RealiMation 2D Functions
The order in which the functions are called (and hence the drawing order) will affect the end
result. Later 2D commands draw over earlier ones, like a painter painting over his/her earlier
work.

The normal use would be to call the drawing functions between the call to RTDisplayView()
and RTSwapPage() :

RTDisplayView (view_id);

// Place the 2D commands here
rtPixel p1, p2;

p1.x = 10;
p1.y = 10;
p2.x = 90;
p2.y = 90;

RT2DRectangle (channel_id, &p1, &p2);

// Now call swap page to display the actual result
RTSwapPage (channel_id);

This approach allows 2D overlays to be ‘built-up’. One example of this was described earlier,
with small individual controls being drawn over a 2D backdrop representing a cockpit.

Summary
However complicated or simple the overlays are, they can significantly enhance a 3D
application. RealiMation provides several methods of generating overlays, each with it’s
own individual features. This document has shown the functions which can be used to generate
2D overlays, along with examples and ideas of their use.

